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Solidification of binary alloys: Thermal effects studied with the phase-field model

M. Conti
Dipartimento di Matematica e Fisica, Universiti Camerino, 62032 Camerino, ltaly
(Received 25 June 1996

We developed a phase-field model for solidification of binary alloys, accounting for thermal effects due to
the release of latent heat at the solid-liquid interface. The model is utilized to study the planar growth of a solid
germ nucleated in its undercooled melt. Steady state solutions, predicted by previous investigations in the
isothermal limit, are lost, and the front velocity decays with time according to the diffusion poweriaw’?.

Due to the transient characteristics of the growth process, the solute segregation at the interface, as described
by the present model, is substantially different from the predictions of the continuous growth model of Aziz
and KaplanActa Metall. 36, 2335(1988], that is derived assuming isothermal and steady growth conditions.
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PACS numbg(s): 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp

[. INTRODUCTION the growth process to its transient stage, when the solute
profile is not yet fully developed; in these conditions, the
The interfacial dynamics in rapid solidification of binary solute segregation at the interface did not fit the results of the
alloys is addressed through sharp interface or diffuse intereontinuous growth model.
face models. Sharp interface modgls2] utilize the diffu- All the previous studies were conducted neglecting ther-
sion equation to describe the transport of heat and solutmal effects in the system. This approximation is commonly
through the bulk phases; the interface boundary conditionpistified observing that, at least for metals, the latent heat
reflect two different constraintdi) the energy and solute released in the process is rejected away from the interface
conservation across the moving front, afid constitutive  much faster than solute; thus the temperature field relaxes in
laws that relate the local interface conditiofg®ncentration times which are much shorter than the time required for re-
c and temperaturd) to the front velocityv. Point (i) re-  arrangement of chemical species, and solidification is effec-
guires a separate modelization of the interface kinetics on tively isothermal. Within this limit, starting from a uniformly
microscopic scale, and was addressed by AZ]zAziz and  undercooled melt ¢(x,0)=c.], both the sharp interface
Kaplan[4], and Aziz and Boettingdi5] within the continu- model[2] and the phase-field modEf] show the possibility
ous growth mode(CGM), assuming isothermal and steady of a steady growth in the planar geometry, along a line in the
growth conditions. They were able to explain the increase ob, T plane.
the partition coefficienk (i.e., the ratiocg/c, of solute con- However, in a recent study, Karma and Sarkissigh
centration in the growing solid to that in the liquid at the pointed out that even for metals the latent heat released at the
interface from the equilibrium valuéx, toward unity at large interface can significantly affect the dynamics of the phase-
growth rates. change process; successively Charach and Keizitéh
A diffuse interface approach to study alloy solidification starting from an approximate formulation of the sharp inter-
is based on the phase-field mod&FM). A phase field face model, in the limit of very dilute solutions, observed
¢(x,t) characterizes the phase of the system at each point;that, due to thermal effects, the steady growth of a planar
free-energy(or entropy functional, depending og, T, and  germ should be driven into a diffusive regime. Then the ef-
c as well as on their gradients, is then extremized in respedect of heat diffusion on the solidification of binary alloys is
to these variables, to derive the dynamic equations for than interesting and still open question.
evolution of the process. In the present study this point will be addressed simulat-
Wheeler, Boettinger, and McFaddéiWBM1) [6] applied ing the planar growth of a solid germ with the phase-field
the PFM to alloy solidification, in the isothermal limit. They model. It will be shown that due to the release of latent heat
started from a free-energy functional that include@Vap)?>  the interface temperature evolves with time, and the operat-
term. However, in their model the partition coefficient re- ing point that characterizes the process in th& plane is
sulted in a decreasing function of the front velocity; this shifted from the steady growth line; the process enters the
inconsistency, as pointed out by Wheeler, Boettinger, andiffusive regime and the front velocity decays with time as
McFadden(WBM2) [7] in a successive study, is due to the poct %2,
energy cost required to sustain large concentration gradients. The solute concentration jump at the interface increases
To account for this effect, the model they developed in-with time, as predicted by the continuous growth model for a
cluded a(Vc)? term, acting to oppose the contraction of the slowing front; however, due to the unsteady characteristics
solute profile at large velocities. Within this model, in the of the process, the solute segregation as described by the
limit of steady growth, the solute segregation at the movingpresent model does not fit the picture given by the CGM.
interface was properly described, and the results of the CGM The paper is organized as follows: in Sec. Il a phase-field
were substantially recovered. Successively, in a numericahodel will be developed that accounts for the evolution of
study, Conti[8] utilized the model to extend the analysis of the thermal field; the model will be utilized to study the
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solidification of a nickel-copper ideal solution. In Sec. llI

some details of the numerical method will be given, and in
Sec. IV the results of the numerical simulations will be pre-

sented. The conclusions will follow in Sec. V.

Il. DEVELOPMENT OF THE MODEL
A. Derivation of the governing equations

The model improves the formulation given by WBNZ],

allowing for the time evolution of the thermal field, and cap-

tures also many characteristics of the formulation given b
Warren and Boettingdrll] in a successive study. The sys-
tem is an initially undercooled binary alloy of componeAts

(solvenj andB (solute. The entropy of the system is written

as
s

In Eqg. (1), integration is performed over the system volume
s(e, ¢,c) is the thermodynamic entropy density that depend
on the internal energy densigyand on the concentration and
phase fields; the coefficienésand é account for the gradient
term corrections. The phase figfdlassumes the valuet=0

in the solid andp=1 in the liquid; intermediate values cor-

2

€ , 9 2
s(e,¢,0)= - [Vo|*= - [Vc[*ldv. (1)

respond to the interface between the two phases. Conserva

tion laws govern both solute and energy density transport:
2
()

e=—V-J,,

c=—-V-J..

The local entropy production is always positive if the energy

and solute fluxes are written as

oS
Jo=M.V %, (4)

58S
MV

Je= s

©)

and the evolution of the phase field is given by
oS
%1

whereM, M., andM 4 are positive constants.
In the above equations, the variational derivatives ar
given by

d=M, (6)

58_0’!3_1 ;
se e T’ @)
6S s wh—uB
C_P . og2a_ 2w 2
5 ac+8Vc +6°V<c, (8
58_(9s+ 2y2 9
56 95 € b. 9

In Eq. (8), u* and u® are the chemical potentials of the
solvent and the solute; for an ideal solution we have

NTI 55
uh=1A(p, T)+ S—T In(1—c), (10)
uB=18(o,T)+ lj—TIn(c), (11)

whereR is the gas constant, ang, is the molar volumef A
andf® are the free energy densities of the pure spetiaad
B. To evaluatef?, the internal energy density of pureis
ostulated in the form

eA(T)=el(T)+p(p)[e(T)—ef(T)], (12)
e% andef* being the internal energy densities in the solid and
liquid phases, respectively; the functigri¢) is monotoni-
cally increasing fronp(0)=0 in the solid top(1)=1 in the
liquid. Assuming constant and equal values for the specific
heatC” in both phases, the energy densitefsande! are
.given by

S

ef(T)=el(TR) +CAT-TH), (13
el(T)=el\(Tp) +CAT-TH), (14)
w_hereTﬁ] is the melting temperature of puse
The difference
LA=el(Th) —eS(Tr) (15)

gives the latent heat per unit volume of speciesThen
fA(¢,T) can be written as

fA=TGA(¢>+[e§<Tﬁ)—cAT¢n+p<¢>LA]( —TLA)

CATI ! 16
— n T—,ra\n , ( )

In Eq. (16) the functionG”(¢) is given by
GA(p)=1WAP*(1- ), (17)

that is a symmetric double well potential with equal minima
at $=0 and ¢=1, scaled by the positive well height/*.
With the choicep(¢)=¢*(10—15¢+64¢7) the bulk solid and
liquid are described by=0 and ¢=1, respectively, for ev-
ery value of temperature.

€ The free energy B is given by an equation similar to Eq.
(16), with the material parameters labeled with the super-
script A replaced with the ones related to tBespecies. The
free energy of the solution is given by

f=(1-c)u’+cub. (18

Using the thermodynamic equation
gs 1 4t 19
% - ? ﬁ. ( )

Egs. (6), (9), (10), (11), (16), (18), and (19) yield the dy-
namic evolution of the phase field as



55 SOLIDIFICATION OF BINARY ALLOYS: THERMAL . .. 767

J JT ! J
&—(f=M¢[62V2¢>—(1—c)HA(¢,T)—cHB(¢,T)], (20) E+[(1—C)LA+CLB] @&—(,f:DTVZT. (29)
where the functioH”(,T) is defined as Here and in the following the approximation is made
C*=CB=c, andDy is the thermal diffusivity of the alloy.
A The model is then synthesized through E(0), (27),
A — / Al Tm and (29). As the solute diffusivity is quite different in the
HY($T)=C(¢)=p (4L T @) solid and liquid phases, in the followirg, will be taken as
and a similar expression holds fer®(¢,T). D.=D¢+p(¢)(D;—Dy), (30)

Starting from Eqs(3), (5), and(8), and observing that
D, and D4 being the diffusivities in the liquid and solid,

v MA_MA _ i MA_MB Vo i MA_MB e respectively.
T ap T ac T
MA—MB B. Nondimensional equations
+ = VT, (22 : . . : .
JaT T The governing equations can be written in nondimen-
sional form scaling lengths to some reference séaland
where time to £&/D, ; the nondimensional temperature is defined as
u=C(T—T4)/L* and the functions1*®(,T) andI'(¢,T)
PR are scaled as H*B(¢,T)=(v,/R)H*B(4,T) and
— ———=HA(¢,T)—HB(¢,T), (23 I'(¢,T)=(v/R)(LAYC)I'(¢,T). We allow M, to depend
g T on the local composition as
9 puh—ubB R 1 24 My=(1—-c)M4+cM5, (31)
g T vmC(1-0) and we introduce the following nondimensional parameters:
9 uP— uB B
! (25) T e €
7 L TR
with the functionI’(¢,T) defined as
~ Dr C(Tn—Tr)
D:_ u® = A
F(¢,T)=— —Tz—(L —L )+?(C —C ) y (26)
Miaf2 v 6°
the dynamic equation for the concentration field is written as m=-p E=% 2 (32)
Jc Um LAB [ AB 52
—=—V-[D c(l—c) = V(5°V?c) FAB_UMm . AB AB_ S ~aB
&t ¢ R W R W ’ (e CToo TQ,B 62 € ]
Um
+Dcc(1-c) E[HA(¢,T)—HB(¢,T)]V¢ MA
n=—g,
My

Um
+D.c(1—c) = I'(¢, T)VT—D_Vcy. 2
c(1=e) g 1T ¢ @ whereT~ is the far-field temperature.
o Then, if (T—T*)<T”, the nondimensional equations of
In Eq. (26) we use the approximationef(T4)  the model become
—CATh=eB(TB)—CBTE: in Eq. (27) the standard defini-
tion of the solute diffusivityD . has been recovered, taking o
—=[(1—c)n+c]mV2¢p—[(1—c)n+c]m
M R at
Cc
—. (28

DC:c(l—c) Um

G'(4) p'(h)a’u

"EAZ "EA

X{(1l—c)
The evolution of the thermal field is easily derived from Egs. {

2), (4), (7), (12, and (15), taking M,=aT? (a being
the thermal conductivity of the allgy and assuming

. G'(¢) p'(¢)aP(u+u*)
e(¢,T)=(1—c)e’N¢,T)+ceB(¢,T):

€82 €BL

] , (33
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Jc

E=V~{)\(¢>)VC—c(l—c))\(¢>)V(EVZC)

—c(1—c)\($)[HA(¢,T)—HB(¢,T)IV

—c(1-c)\M($)T(4,T)Vu}, (34
and
Mo Tip'(6) 22 _Bv2 35
E+[( —c)+clL]p (d’)ﬁ— u, (39
where, in Eq.(34), \(¢) is defined as
_ Ds ( Ds)
)\(¢)—E+p(¢) 1—5' : (36)

C. Numerical values of the parameters
The model parameterg™B, €8, WAB m, andn were
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TABLE |. Material parameters for the Ni-Cu alloy.

Nickel Copper
T (K) 1728 1358
L (Jlcn?) 2350 1728
vm (cm’mole)? 7.0 7.8
o (Jlen?) 3.7x10°° 2.8x10°°
B (cm/K 9° 160 198
D, (cn¥/s) 1075 107°

8An average value of 7.4 will be taken.
bFrom the estimation of Willneckest al. (Ref. [12]).

Ill. NUMERICAL METHOD

The evolution of Eqs(33)—(35) has been considered in
one spatial dimension, in the domatx,,<Xx=<X,,, with x,
large enough to prevent finite-size effects. We imposed the
boundary conditionsp,=c,=T,=0 at the domain’s walls.
Initially in the undercooled melt, at uniform temperature and
concentrationT” and ¢”, a solid germ is nucleated at the
center of the domain at=0; the germ thickness is the mini-

associated with the physical properties of the alloy compomum required to prevent remelting and to ensure the succes-

nents by WBM1[6] and Warren and Boettingét 1]; below
only the results are synthesized:

A,B A,B
A,B:L_& ~A,B:h_
CT” 6v25h®’ ’
~a g _Um 12578 BBUBTﬁ 3
“Ryamaeee M oe 47
IBAU'ATQ'LB

nN=-—s+s%=—pm"%,
BBO_BTanLA

whered”B is the surface tension of pufeor B; and 8B is

the kinetic undercooling coefficient, that relates the interfac e
g through 0.1%, and the mass balance within 0.001%.

v=p*(TAB—T). In the phase-field model for a pure sub-

undercooling to the interface velocity

sive growth. The germ composition was assumed to be
¢(0,0)=c”. To discretize the equations, a second order in
space and first order in time finite-difference approximations
were utilized. Then an explicit scheme was employed to ad-
vance forward in time the phase field and concentration
equations; the linear temperature equation was more conve-
niently integrated with a fully implicit method. To ensure an
accurate spatial resolution, the computational domain was
divided into two parts; in an inner region, of interest to the
evolution of the phase and concentration fields, the grid
spacing was selected as<=0.5¢. In the outer region only

the more diffuse temperature field changes with time; here a
grid spacing Ax=5¢ was utilized. A time step
At=0.25x10 1% was required for numerical stability. To
verify the consistency of the numerical scheme, at each time
step both energy and solute conservation were checked. In
@II the simulations the energy balance was verified within

stance, the interface thickness is a free and independent pa-

rameter, that has been indicated in E2§) throughh™B. As
€ is not allowed to depend on concentration, E@@2) and
(37) force the condition

h T (39)
hA ™ oBTh

The gradient concentration coefficiefit following the sug-
gestion of WBM2[7], will be chosen so tha¢/5<1.

IV. NUMERICAL RESULTS

The model presented above was proposed in its isother-
mal version by WBM2[7]; they developed an asymptotic
analysis fore/ <1, and solved in this limit the time indepen-
dent equations. Given the far-field concentration, steady so-
lutions were found for the growth process when the system
temperature is below, i.e., the temperature for which the
Helmholtz free energy density has equal values in both
phases. The same conclusions were recovered by (&nti

Table | summarizes the values of the thermophysicafor the long time solution of the fully time dependent equa-

properties of nickel ) and copper B) utilized to estimate

the above parametefd2]. The length scale was fixed at
£=2.1x10"* cm; a realistic value oh® was selected as

h"=1.68x10"" cm. With ¢/6=8.75x103, it results that
o T*ITA=395.62, oBT*/TE=347.28, €'=8.00x10*,
€%=8.02x10"%, W"=0.965, WB=0.961, D=1.55x10",
L=0.735,m=350,n=1.01, andE=8X10"3,

tions.

In the present section the isothermal approximation will
be relaxed; then the steady growth turns into a diffusive re-
gime, with the interface velocity decaying with time as
voct Y2, Excepting for temperature, dimensionless units will
be used throughout this section. The velocity scale is given
by v,=D,/¢=4.76<10 2 cms L. Figure 1 shows, in the
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FIG. 1. A portion of the equilibrium phase diagram of the Ni-Cu FIG. 3. Interface velocity vs time. Solid lines: isothermal ap-
alloy, computed from the data given in Table I. The vertical line Proximation (T*=1695 and 1700 K, from top to bottomdotted
corresponds to the value of used in the simulations. From top to lines: present modell*=1695 and 1700 K, from top to bottom
bottom are represented the liquidus line, Thgline (dotted, and
the solidus line. cases evolves into the region of the phase diagram confined

between the liquidus and solidus lines, and the initial differ-
(c,T) plane, the portion of the phase diagram of the alloyence is reabsorbed with time; this result is in agreement with
that will be explored in the following. The initial concentra- some first calculations based on the sharp interface model,
tion of the melt is set t”=0.072 14, that belongs to the that show, in the very dilute solution limit, that the final state
solidus line afT =1699.8 K. Two values of the far-field tem- does not depend on the initial melt temperatiir@].
perature will be chosen to illustrate the numerical results, For the same values of”, Fig. 3 shows the interface
namely, T*=1695 and 1700 K; in these conditions the iso- velocity versus time(dotted line, to accommodate the
thermal model reaches long time steady solutions, with theeader, the steady solutions of the isothermal limit are also
front velocity given byv =2.14x10* and 7.7 10 respec- plotted in the grapfisolid lines. The log-log plot indicates
tively. When the evolution of the thermal field is allowed that for the present model the front velocity scales with the
through Eq.(35), a thermal gradient forms at the moving familiar diffusive law voct =22
front, in order to diffuse away the latent heat; then the local In Fig. 4 we display the temperature field sampled at three
temperature increases with time and the interface temperdalifferent times, forT*=1700 K; the curves show the pro-
ture and concentration no longer match the steady growtgressive spreading of the thermal field. The effect is charac-
conditions. This behavior is shown in Fig. 2, where the in-teristic of the diffusive growth, as the interface velocity de-
terface temperature is represented versus time. The tweays with time, and correspondingly the characteristic length
curves start from different values ®f°, below and above the of the thermal fieldD+/v increases.
solidus line atc=c™; however, the operating point in both
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log . (t)

FIG. 4. Temperature profiles at three different times:
FIG. 2. Interface temperature vs tim&>=1700 K (upper t=2.5x10"° (solid line), 5.0x107® (dashed ling and 9.0<10°®
curve andT*=1695 K (lower curve. (dotted ling. T”=1700 K.
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0.00 0.02 0.04 0.06 0.08 0.10 -8 215 -7 -6.5 -6 -5.5 -5

x log,,(D)
FIG. 5. Concentration profiles at three different times:

t=2.5x107° (solid line), 5.0x10°® (dashed ling and 9.0<107°
(dotted ling. T*=1700 K.

FIG. 6. Solute concentration on the liquid side of the interface,
vs time. Solid lines: isothermal approximatigi”“=1700 K and
T”=1695 K, from top to bottory dotted lines: present model
o . (T"=1695 K andT*=1700 K, from top to bottom

The solute concentration field, sampled at the same times,
is shown in Fig. 5 for the same value df°. The (Vc)? Figure 6 showsc,,, for T“=1695 and 1700 K(dotted
correction in the entropy fupctional) penalizes the growth |ines, upper and lower curves, respectivene solid lines
of large concentration gradients; as shown by the curves, thggicate the solutions computed from the isothermal model
concentration jump across the interface develops along @r“=1700 and 1695 K, from the top to bottanThe solute
characteristic length of the order of 19 that is much larger  segregation reflects the unsteady characteristics of the pro-
than the length scale of the phase-field transition. Theess. The isothermal curves of Fig. 6 show that the relaxation
damped oscillation of the profile ahead of the interface is dugjme t* of the solute peak becomes shorter as the growth rate
to the fourth order diffusion equation, and is not expected folncreases. As a consequence, in the isothermal approxima-
the classical second order diffusion problgrii tion during the first transient solute, partitioning is more ef-

The continuous growth mod¢B-5], that is developed fective at large growth rates; at long times, as expected,

within the isothermal approximation and assumes steadihwer values ot . correspond to higher values of the front
growth, predicts a monotonic increase of the partition coefyg|gcity.

ficientk with the front velocity; the functional form d¢ can The dotted lines indicate that in the present model in-

be given by creasing the far-field temperatuiiee., decreasing the growth
rate results in lower values of,,.,; then the solute segre-

_ Ketvlvg (39) gation would be more effective at higher velocities. This

1+vlvg’ appearent paradox is easily explained referring to the above

considerations: as® is comparable with the relaxation time

wherevy is a characteristic kinetic velocity which is often of the temperature field, the short time features of the solu-

taken asD,/a,, a, being an interatomic dimension. Equation tion survive along the growth process.

(39) reduces tk= k. at equilibrium(maximum segregation

and describes the progressive suppression of solute segrega-

tion (k—1) at large interface velocities.

Although the present data refer to a slowing front, the Rapid solidification of binary alloys is generally ad-
curves shown in Fig. 5 are in qualitative agreement with thedressed in the isothermal approximation, due to the large
predictions of the CGM: as time elapses, the front velocityratio of heat to solute diffusivity. Within this approximation
decays and the concentration jump at the interface increasdth the continuous growth model and the phase-field model
i.e., k decreases. However, a finite relaxation time is necesadmit steady solutions for the growth in planar geometry. In
sary to develop the solute profile, and the latter cannot followthis paper it has been shown that even for metals the effects
instantaneously the time variation of the front velocity; as adue to the evolution of the thermal field cannot be neglected.
result the concentration jump given by Eg9) is larger than  The steady growth regime predicted by previous studies is
the actual one, shown in Fig. 5. A=9x10 ° the dotted line  turned into a diffusive regime, with the front velocity decay-
indicates a value 0k=0.99, while Eq.(39) would give ing with time asv ot~ Y2 The relaxation times of the thermal
k=0.93(8). and concentration fields are comparable, and the solute con-

To evaluate the solute segregation on the moving frontcentration at the interface cannot instantaneously follow the
we computed the maximum valwg,,, of c(x,t), that iden- local temperature and velocity conditions. Then the solute
tifies the concentration, on the liquid side of the interface; segregation, as described by the present model, reflects the
on the solid side we associated the concentratioto the  unsteady characteristics of the process, and does not fit the
value ofc(x,t) corresponding tap(x,t) =0.05. predictions of the continuous growth model.

k(v)

V. CONCLUSIONS
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